Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 22, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596772

RESUMO

Constructing high-quality haplotype-resolved genome assemblies has substantially improved the ability to detect and characterize genetic variants. A targeted approach providing readily access to the rich information from haplotype-resolved genome assemblies will be appealing to groups of basic researchers and medical scientists focused on specific genomic regions. Here, using the 4.5 megabase, notoriously difficult-to-assemble major histocompatibility complex (MHC) region as an example, we demonstrated an approach to construct haplotype-resolved assembly of the targeted genomic region with the CRISPR-based enrichment. Compared to the results from haplotype-resolved genome assembly, our targeted approach achieved comparable completeness and accuracy with reduced computing complexity, sequencing cost, as well as the amount of starting materials. Moreover, using the targeted assembled personal MHC haplotypes as the reference both improves the quantification accuracy for sequencing data and enables allele-specific functional genomics analyses of the MHC region. Given its highly efficient use of resources, our approach can greatly facilitate population genetic studies of targeted regions, and may pave a new way to elucidate the molecular mechanisms in disease etiology.


Assuntos
Genoma Humano , Genômica , Humanos , Haplótipos/genética , Análise de Sequência de DNA/métodos , Genoma Humano/genética , Genômica/métodos , Complexo Principal de Histocompatibilidade/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Aging (Albany NY) ; 14(11): 4786-4818, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675043

RESUMO

Accumulated evidence shows that tumor microenvironment plays crucial roles in predicting clinical outcomes of lung adenocarcinoma (LUAD). The current study aimed to identify some potentially prognostic signatures by systematically revealing the transcriptome characteristics in LUADs with differing immune phenotypes. LUAD gene expression data were retrieved from the public TCGA and GEO databases, and the transcriptome characteristics were systematically revealed using a comprehensive bioinformatics method including single-sample gene set enrichment analysis, differentially expressed gene (DEG) analysis, protein and protein interaction (PPI) network construction, competitive endogenous RNA (ceRNA) network construction, weighted gene coexpression network analysis and prognostic model establishment. Finally, 1169 key DEGs associated with LUAD immune phenotype, including 88 immune DEGs, were excavated. Five essential and eight immune essential DEGs were separately identified by constructing two PPI networks based on the above DEGs. Totals of 1085 key DElncRNAs and 45 key DEmiRNAs were excavated and one ceRNA network consisting of 26 DEmRNAs, 3 DEmiRNAs and 57 DElncRNAs were established. The most significant gene coexpression module (cor=0.63 and p=3e-55) associated with LUAD immune phenotypes and three genes (FGR, BTK, SPI1) related to the immune cell infiltration were identified. Three robust prognostic signatures including a 9-lncRNA, an 8-lncRNA and an 8-mRNA were established. The areas under the curves of 5-year correlated with overall survival rate were separately 0.7319, 0.7228 and 0.713 in the receiver operating characteristic curve. The findings provide novel insights into the immunological mechanism in LUAD biology and in predicting the prognosis of LUAD patients.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , RNA Longo não Codificante , Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Fenótipo , Prognóstico , RNA Longo não Codificante/genética , Transcriptoma , Microambiente Tumoral/genética
3.
Comput Math Methods Med ; 2022: 7525048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572821

RESUMO

Colon adenocarcinoma (COAD) is a common digestive tract tumor. Autophagy-related genes (ARGs) may play an obbligato role in the biological processes of COAD. This study was aimed at exploring the role of ARGs in COAD. Clinical data and RNA sequencing data of tumor and healthy samples were obtained from The Cancer Genome Atlas (TCGA), and discrepantly expressed ARGs were screened. Statistical differences of ARGs were performed with Gene Ontology (GO) functional annotation and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Eight ARGs were selected by univariate Cox and multivariate Cox regression. Kaplan-Meier (K-M) and multivariate receiver operating characteristic (multi-ROC) were used to check the fitness of the model. Among 398 COAD samples and 39 normal samples obtained from the TCGA database, 37 differentially expressed ARGs were screened. In the training group, eight prognostics-related ARGs (MTMR14, VAMP3, HSPA8, TSC1, DAPK1, CX3CL1, ATG13, and MAP1LC3C) were identified by Cox regression. A gene signature risk prediction model was constructed base on 8 autophagy-related genes. The survival time of the low-risk group was longer than the high-risk group, and the AUC of the model was 0.794. Univariate and multivariate Cox regression analysis showed that age and riskscore were the independent predictor. In conclusion, the prognosis model we built based one ARGs of COAD patients can estimate the prognosis of patients in clinical treatment.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Adenocarcinoma/genética , Autofagia/genética , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Humanos , Prognóstico
4.
Clin Epigenetics ; 13(1): 124, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103071

RESUMO

BACKGROUND: Thoracic aortic dissection (TAD) is a severe disease with limited understandings in its pathogenesis. Altered DNA methylation has been revealed to be involved in many diseases etiology. Few studies have examined the role of DNA methylation in the development of TAD. This study explored alterations of the DNA methylation landscape in TAD and examined the potential role of cell-free DNA (cfDNA) methylation as a biomarker in TAD diagnosis. RESULTS: Ascending aortic tissues from TAD patients (Stanford type A; n = 6) and healthy controls (n = 6) were first examined via whole-genome bisulfite sequencing (WGBS). While no obvious global methylation shift was observed, numerous differentially methylated regions (DMRs) were identified, with associated genes enriched in the areas of vasculature and heart development. We further confirmed the methylation and expression changes in homeobox (Hox) clusters with 10 independent samples using bisulfite pyrosequencing and quantitative real-time PCR (qPCR). Among these, HOXA5, HOXB6 and HOXC6 were significantly down-regulated in TAD samples relative to controls. To evaluate cfDNA methylation pattern as a biomarker in TAD diagnosis, cfDNA from TAD patients (Stanford type A; n = 7) and healthy controls (n = 4) were examined by WGBS. A prediction model was built using DMRs identified previously from aortic tissues on methylation data from cfDNA. Both high sensitivity (86%) and specificity (75%) were achieved in patient classification (AUC = 0.96). CONCLUSIONS: These findings showed an altered epigenetic regulation in TAD patients. This altered epigenetic regulation and subsequent altered expression of genes associated with vasculature and heart development, such as Hox family genes, may contribute to the loss of aortic integrity and TAD pathogenesis. Additionally, the cfDNA methylation in TAD was highly disease specific, which can be used as a non-invasive biomarker for disease prediction.


Assuntos
Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Metilação de DNA/genética , Epigênese Genética/genética , Genes Homeobox/genética , Adulto , Progressão da Doença , Feminino , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade
5.
J Transl Med ; 19(1): 205, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985530

RESUMO

BACKGROUND: Currently, no molecular classification is established for bladder cancer based on metabolic characteristics. Therefore, we conducted a comprehensive analysis of bladder cancer metabolism-related genes using multiple publicly available datasets and aimed to identify subtypes according to distinctive metabolic characteristics. METHODS: RNA-sequencing data of The Cancer Genome Atlas were subjected to non-negative matrix fractionation to classify bladder cancer according to metabolism-related gene expression; Gene Expression Omnibus and ArrayExpress datasets were used as validation cohorts. The sensitivity of metabolic types to predicted immunotherapy and chemotherapy was assessed. Kaplan-Meier curves were plotted to assess patient survival. Differentially expressed genes between subtypes were identified using edgeR. The differences among identified subtypes were compared using the Kruskal-Wallis non-parametric test. To better clarify the subtypes of bladder cancer, their relationship with clinical characteristics was examined using the Fisher's test. We also constructed a risk prediction model using the random survival forest method to analyze right-censored survival data based on key metabolic genes. To identify genes of prognostic significance, univariate Cox regression, lasso analysis, and multivariate regression were performed sequentially. RESULTS: Three bladder cancer subtypes were identified according to the expression of metabolism-related genes. The M1 subtype was characterized by high metabolic activity, low immunogenicity, and better prognosis. M2 exhibited moderate metabolic activity, high immunogenicity, and the worst prognosis. M3 was associated with low metabolic activity, low immunogenicity, and poor prognosis. M1 showed the best predicted response to immunotherapy, whereas patients with M1 were predicted to be the least sensitive to cisplatin. By contrast, M2 showed the worst predicted response to immunotherapy but was predicted to be more sensitive to cisplatin, doxorubicin, and other first-line anticancer drugs. M3 was the most sensitive to gemcitabine. The risk model based on metabolic genes effectively predicted the prognosis of bladder cancer patients. CONCLUSIONS: Metabolic classification of bladder cancer has potential clinical value and therapeutic feasibility by inhibiting the associated pathways. This classification can provide valuable insights for developing precise bladder cancer treatment.


Assuntos
Neoplasias da Bexiga Urinária , Biomarcadores Tumorais , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia
6.
Front Mol Biosci ; 8: 644557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987201

RESUMO

Enhancer RNAs (eRNAs) participate in tumor growth and immune regulation through complex signaling pathways. However, the immune-related function of the eRNA-mRNA axis in lung adenocarcinoma (LUAD) is unclear. Data on the expression of eRNAs and mRNAs were downloaded from The Cancer Genome Atlas, GEO, and UCSC Xena, including LUAD, and pan-cancer clinical data and mutational information. Immune gene files were obtained from ImmLnc and ImmPort databases. Survival indices, including relapse-free and overall survival, were analyzed using the Kaplan-Meier and log-rank methods. The level of immune cell infiltration, degree of tumor hypoxia, and tumor cell stemness characteristics were quantified using the single-sample gene set enrichment analysis algorithm. The immune infiltration score and infiltration degree were evaluated using the ESTIMATE and CIBERSORT algorithms. The tumor mutation burden and microsatellite instability were examined using the Spearman test. The LUAD-associated immune-related LINC00987/A2M axis was down-regulated in most cancer types, indicating poor survival and cancer progression. Immune cell infiltration was closely related to abnormal expression of the LINC00987/A2M axis, linking its expression to a possible evaluation of sensitivity to checkpoint inhibitors and response to chemotherapy. Abnormal expression of the LINC00987/A2M axis was characterized by heterogeneity in the degree of tumor hypoxia and stemness characteristics. The abnormal distribution of immune cells in LUAD was also verified through pan-cancer analysis. Comprehensive bioinformatic analysis showed that the LINC00987/A2M axis is a functional and effective tumor suppressor and biomarker for assessing the immune microenvironment and prognostic and therapeutic evaluations of LUAD.

7.
Front Oncol ; 10: 544610, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117683

RESUMO

Molecular classification of bladder cancer is becoming increasingly important for its clinical management. And, the current classifications are primarily based on gene expression profiles. We identified four immunotypes of bladder cancer (referred to as C1-C4) based on gene expression profiles performed by immune-related gene sets in three independent data sets, and proved that this classification is effective and reproducible. We found that C2 is an immune-infiltrating type and C4 is an immune "desert" type. These types are characterized by the up- and downregulation of genes encoding numerous immune checkpoint proteins and HLA and regulating human immune cell subgroups. The survival rate was better for the C2 subtype than for other subtypes. We believe that this can be explained by the antitumor effects of CD4 memory T cells and CD8 T cells as well as their ability to circumvent M0 macrophage antitumor immunity. In addition, C2 was most sensitive to not only anti-PD-1 immunosuppressive therapy, but also conventional chemotherapeutics such as gemcitabine and bleomycin. The C4 subtype was most sensitive to the chemotherapy drugs cisplatin and doxorubicin. This theoretical framework may guide the personalized treatment of bladder cancer in the future. It is worth noting that the C2 immune infiltration type positively correlates with a variety of stromal components, such as enrichment of endothelial cells and fibroblasts, epithelial-mesenchymal transition, and angiogenesis, together with enrichment of seven kinds of stem cells. We further identified tumor-related JAK-STAT and other signaling pathways in the C2 subtype, along with important mutations in the proteins involved in these pathways, revealing the complex mechanism underlying tumor immune escape. Our results, and particularly the identification of hub genes specific to the C2 and C4 subtypes, provide a reference for the development of immunotherapeutic agents against bladder cancer.

8.
Stem Cell Res Ther ; 11(1): 457, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115513

RESUMO

BACKGROUND: Bladder cancer (BLCA) is the fifth most common type of cancer worldwide, with high recurrence and progression rates. Although considerable progress has been made in the treatment of BLCA through accurate typing of molecular characteristics, little is known regarding the various genetic and epigenetic changes that have evolved in stem and progenitor cells. To address this issue, we have developed a novel stem cell typing method. METHODS: Based on six published genomic datasets, we used 26 stem cell gene sets to classify each dataset. Unsupervised and supervised machine learning methods were used to perform the classification. RESULTS: We classified BLCA into three subtypes-high stem cell enrichment (SCE_H), medium stem cell enrichment (SCE_M), and low stem cell enrichment (SCE_L)-based on multiple cross-platform datasets. The stability and reliability of the classification were verified. Compared with the other subtypes, SCE_H had the highest degree of cancer stem cell concentration, highest level of immune cell infiltration, and highest sensitivity not only to predicted anti-PD-1 immunosuppressive therapy but also to conventional chemotherapeutic agents such as cisplatin, sunitinib, and vinblastine; however, this group had the worst prognosis. Comparison of gene set enrichment analysis results for pathway enrichment of various subtypes reveals that the SCE_H subtype activates the important pathways regulating cancer occurrence, development, and even poor prognosis, including epithelial-mesenchymal transition, hypoxia, angiogenesis, KRAS signal upregulation, interleukin 6-mediated JAK-STAT signaling pathway, and inflammatory response. Two identified pairs of transcription factors, GRHL2 and GATA6 and IRF5 and GATA3, possibly have opposite regulatory effects on SCE_H and SCE_L, respectively. CONCLUSIONS: The identification of BLCA subtypes based on cancer stem cell gene sets revealed the complex mechanism of carcinogenesis of BLCA and provides a new direction for the diagnosis and treatment of BLCA.


Assuntos
Neoplasias da Bexiga Urinária , Proteínas de Ligação a DNA , Fator de Transcrição GATA3 , Fator de Transcrição GATA6 , Regulação Neoplásica da Expressão Gênica , Genômica , Humanos , Fatores Reguladores de Interferon , Reprodutibilidade dos Testes , Células-Tronco , Fatores de Transcrição , Neoplasias da Bexiga Urinária/genética
9.
PeerJ ; 8: e9774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953265

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the fifth most common cancer. Since changes in liver metabolism contribute to liver disease development, it is necessary to build a metabolism-related prognostic model for HCC. METHODS: We constructed a metabolism-related-gene (MRG) signature comprising nine genes, which segregated HCC patients into high- and low-risk groups. RESULTS: The survival rate (overall survival: OS; relapse-free survival; and progression-free survival) of patients in the low-risk group of The Cancer Genome Atlas (TCGA) cohort was significantly higher than that of patients in the high-risk group. The OS prognostic signature was validated in the International Cancer Genome Consortium independent cohort. The corresponding receiver operating characteristic curves of the model indicated that the signature had good diagnostic efficiency, in terms of improving OS over 1, 3, and 5 years. Hierarchical analysis demonstrated that the MRG signature was significantly associated with better prognosis in male patients, patients aged ≤ 65 years, and patients carrying the wild-type TP53 or CTNNB1 genes. A nomogram was established, and good performance and clinical practicability were confirmed. Additionally, using the GSE109211 dataset from the Gene Expression Omnibus database, we were able to verify that the nine genes in this MRG signature had different responses to sorafenib, suggesting that some of these MRGs may act as therapeutic targets for HCC. CONCLUSIONS: We believe that these findings will add value in terms of the diagnosis, treatment, and prognosis of HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...